Что называется полной энергией системы. Механическая энергия тела. Виды механической энергии

Механическая энергия системы существует в кинетическом и потенциальном виде. Кинетическая энергия появляется, когда объект или система начинает двигаться. Потенциальная энергия возникает при взаимодействии объектов или систем друг с другом. Она не появляется и не исчезает бесследно и, зачастую, не зависит от работы. Однако она может переходить из одной формы в другую.

Например, шар для боулинга, находясь на уровне трех метров над землей, не имеет кинетической энергии, потому что он не двигается. У него есть большое количество потенциальной энергии (в этом случае, гравитационной энергии), которая будет преобразована в кинетическую, если шар начнет падать.

Знакомство с различными видами энергии начинается в средних классах школы. Детям, как правило, легче визуализировать и легко понять принципы механических систем, не вдаваясь в подробности. Основные расчеты в таких случаях могут быть сделаны без использования сложных вычислений. В большинстве простых физических задач, механическая система остается замкнутой и факторы, которые уменьшают значение общей энергии системы, не принимаются во внимание.

Механическая, химическая и ядерная энергия системы

Существует множество различных видов энергии, и иногда, может быть, трудно правильно отличить один из них от другого. Химическая энергия, например, представляет собой результата взаимодействия молекул веществ между собой. Ядерная энергия появляется во время взаимодействия между частицами в ядре атома. Механическая энергия, в отличие от других, как правило, не учитывает молекулярный состав объекта и учитывает только их взаимодействие на макроскопическом уровне.

Это приближение предназначено для упрощения расчетов механической энергии сложных систем. Объекты в этих системах обычно рассматриваются в виде однородных тел, а не как сумма миллиардов молекул. Расчет как кинетической, так и потенциальной энергии одного объекта является простой задачей. Расчет тех же видов энергии для миллиардов молекул будет крайне затруднительным. Без упрощения деталей в механической системе, ученые должны были бы изучить отдельные атомы, а также все взаимодействия и силы, существующие между ними. Этот подход, как правило, применяется элементарных частиц.

Преобразование энергии

Механическая энергия может быть преобразована в другие виды энергии с использованием специального оборудования. Например, генераторы предназначены для превращения механической работы в электричество. Другие виды энергии также могут быть преобразованы в механическую энергию. Например, двигатель внутреннего сгорания в автомобиле преобразует химическую энергию топлива в механическую, используемую для движения.

Полная механическая энергия характеризует движение и взаимодействие тел, следовательно, зависит от скоростей и взаимного расположения тел.

Полная механическая энергия замкнутой механической системы равна сумме кинетической и потенциальной энергии тел этой системы:

Закон сохранения энергии

Закон сохранения энергии - фундаментальный закон природы.

В ньютоновской механике закон сохранения энергии формулируется следующим образом:

    Полная механическая энергия изолированной (замкнутой) системы тел остаётся постоянной.

Другими словами:

    Энергия не возникает из ничего и не исчезает никуда, она может только переходить из одной формы в другую.

Классическими примерами этого утверждения являются: пружинный маятник и маятник на нити (с пренебрежимо малым затуханием). В случае пружинного маятника в процессе колебаний потенциальная энергия деформированной пружины (имеющая максимум в крайних положениях груза) переходит в кинетическую энергию груза (достигающую максимума в момент прохождения грузом положения равновесия) и обратно. В случае маятника на нити потенциальная энергия груза переходит в кинетическую энергию и обратно.

2 Оборудование

2.1 Динамометр.

2.2 Штатив лабораторный.

2.3 Груз массой 100 г – 2шт.

2.4 Линейка измерительная.

2.5 Кусочек мягкой ткани или войлока.

3 Теоретическое обоснование

Схема экспериментальной установки приведена на рисунке 1.

Динамометр укреплен вертикально в лапке штатива. На штатив по­мещают кусочек мягкой ткани или войлока. При подвешивании к ди­намометру грузов растяжение пружины динамометра определяется положением указателя. При этом максимальное удлинение (или стати­ческое смещение) пружины х 0 возникает тогда, когда сила упругости пружины с жесткостью k уравновешивает силу тяжести груза массой т:

kx 0 =mg, (1)

где g = 9,81- ускорение свободного падения.

Следовательно,

Статическое смещение характеризует новое положение равновесия О" нижнего конца пружины (рис. 2).

Если груз оттянуть вниз на расстояние А от точки О" и отпустить в точке 1, то возникают периодические колебания груза. В точках 1 и 2, называемых точками поворота, груз останавливается, изменяя на­правление движения на противоположное. Поэтому в этих точках ско­рость груза v = 0.

Максимальной скоростью v m ax груз будет обладать в средней точ­ке О". На колеблющийся груз действуют две силы: постоянная сила тяжести mg и переменная сила упругости kx. Потенциальная энергия тела в гравитационном поле в произвольной точке с координатой х равна mgx. Потенциальная энергия деформированного тела соответственно равна .

При этом за нуль отсчета потенциальной энергии для обеих сил принята точка х = 0, соответствующая положению указателя для не­растянутой пружины.

Полная механическая энергия груза в произвольной точке скла­дывается из его потенциальной и кинетической энергии. Пренебрегая силами трения, воспользуемся законом сохранения полной механиче­ской энергии.

Приравняем полную механическую энергию груза в точке 2 с коор­динатой -(х 0 -А) и в точке О" с координатой 0 :

Раскрывая скобки и проводя несложные преобразования, приведем формулу (3) к виду

Тогда модуль максимальной скорости грузов

Жесткость пружины можно найти, измерив статическое смещение х 0 . Как следует из формулы (1),

Взгляните: катящийся по дорожке шар сбивает кегли, и они разлетаются по сторонам. Только что выключенный вентилятор ещё некоторое время продолжает вращаться, создавая поток воздуха. Обладают ли эти тела энергией?

Заметим: шар и вентилятор совершают механическую работу, значит, обладают энергией. Они обладают энергией потому, что движутся. Энергию движущихся тел в физике называют кинетической энергией (от греч. «кинема» – движение).

Кинетическая энергия зависит от массы тела и скорости его движения (перемещения в пространстве или вращения). Например, чем больше масса шара, тем больше энергии он передаст кеглям при ударе, тем дальше они разлетятся. Например, чем больше скорость вращения лопастей, тем дальше вентилятор переместит поток воздуха.

Кинетическая энергия одного и того же тела может быть различной с точек зрения различных наблюдателей. Например, с нашей точки зрения как читателей этой книги, кинетическая энергия пня на дороге равна нулю, так как пень не движется. Однако по отношению к велосипедисту пень обладает кинетической энергией, поскольку стремительно приближается, и при столкновении совершит очень неприятную механическую работу – погнёт детали велосипеда.

Энергию, которой тела или части одного тела обладают потому, что взаимодействуют с другими телами (или частями тела), в физике называют потенциальной энергией (от лат. «потенциа» – сила).

Обратимся к рисунку. При всплытии мяч может совершить механическую работу, например, вытолкнуть нашу ладонь из воды на поверхность. Расположенная на некоторой высоте гиря может совершить работу – расколоть орех. Натянутая тетива лука может вытолкнуть стрелу. Следовательно, рассмотренные тела обладают потенциальной энергией, так как взаимодействуют с другими телами (или частями тела). Например, мяч взаимодействует с водой – архимедова сила выталкивает его на поверхность. Гиря взаимодействует с Землёй – сила тяжести тянет гирю вниз. Тетива взаимодействует с другими частями лука – её натягивает сила упругости изогнутого древка лука.

Потенциальная энергия тела зависит от силы взаимодействия тел (или частей тела) и расстояния между ними. Например, чем больше архимедова сила и глубже мяч погружён в воду, чем больше сила тяжести и дальше гиря от Земли, чем больше сила упругости и дальше оттянута тетива, – тем больше потенциальные энергии тел: мяча, гири, лука (соответственно).

Потенциальная энергия одного и того же тела может быть различной по отношению к различным телам. Взгляните на рисунок. При падении гири на каждый из орехов обнаружится, что осколки второго ореха разлетятся намного дальше, чем осколки первого. Следовательно, по отношению к ореху 1 гиря обладает меньшей потенциальной энергией, чем по отношению к ореху 2. Важно: в отличие от кинетической энергии, потенциальная энергия не зависит от положения и движения наблюдателя, а зависит от выбора нами «нулевого уровня» энергии.

В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.
Пусть тело В , движущееся со скоростью v , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой F и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила -F , касательная составляющая которой -F τ вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона


Следовательно,

Работа, совершаемая телом до полной его остановки равна:


Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

(3.7)

Из формулы (3.7) видно, что кинетическая энергия тела не может быть отрицательной (E k ≥ 0 ).
Если система состоит из n поступательно движущихся тел, то для ее остановки необходимо затормозить каждое из этих тел. Поэтому полная кинетическая энергия механической системы равна сумме кинетических энергий всех входящих в нее тел:

(3.8)

Из формулы (3.8) видно, что E k зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой m i приобрело скорость ν i . Другими словами, кинетическая энергия системы есть функция состояния ее движения .
Скорости ν i существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инерциальной системе отсчета, т.к. иначе нельзя было бы использовать законы Ньютона. Однако, в разных инерциальных системах отсчета, движущихся относительно друг друга, скорость ν i i -го тела системы, а, следовательно, его E ki и кинетическая энергия всей системы будут неодинаковы. Таким образом, кинетическая энергия системы зависит от выбора системы отсчета, т.е. является величиной относительной .
Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.
Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P , поднятого на высоту h , потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2 , где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).
Рассмотрим потенциальную энергию системы Земля – тело массой m , поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. Если тело падает по вертикали, то

Где E no – потенциальная энергия системы при h = 0 (знак «-» показывает, что работа совершается за счет убыли потенциальной энергии).
Если это же тело падает по наклонной плоскости длиной l и с углом наклона α к вертикали (lcosα = h ), то работа сил тяготения равна прежней величине:

Если, наконец, тело движется по произвольной криволинейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинейных участков Δl i . Работа силы тяготения на каждом из таких участков равна

На всем криволинейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.
Таким образом, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:


В свою очередь работа dA выражается как скалярное произведение силы F на перемещение dr , поэтому последнее выражение можно записать следующим образом:

(3.9)

Следовательно, если известна функция E n (r) , то из выражения (3.9) можно найти силу F по модулю и направлению.
Для консервативных сил

Или в векторном виде


где

(3.10)

Вектор, определяемый выражением (3.10), называется градиентом скалярной функции П ; i, j, k - единичные векторы координатных осей (орты).
Конкретный вид функции П (в нашем случае E n ) зависит от характера силового поля (гравитационное, электростатическое и т.п.), что и было показано выше.
Полная механическая энергия W системы равна сумме ее кинетической и потенциальной энергий:


Из определения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, т.е. зависит только от положения и скоростей всех тел системы.

Системой частиц может быть любое тело, газ, механизм, Солнечная система и т. д.

Кинетическая энергия системы частиц, как упоминалось выше, определяется суммой кинетических энергий частиц, входящих в данную систему.

Потенциальная энергия системы складывается из собственной потенциальной энергии частиц системы, и потенциальной энергии системы во внешнем поле потенциальных сил .

Собственная потенциальная энергия обусловлена взаимным расположением частиц, принадлежащих данной системе (т.е. ее конфигурацией), между которыми действуют потенциальные силы, а также взаимодействием между отдельными частями системы. Можно показать, что работа всех внутренних потенциальных сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы:

. (3.23)

Примерами собственной потенциальной энергии являются энергия межмолекулярного взаимодействия в газах и жидкостях, энергия электростатического взаимодействия неподвижных точечных зарядов. Примером внешней потенциальной энергии является энергия тела, поднятого над по­верхностью Земли, так как она обусловлена действием на тело пос­тоянной внешней потенциальной силы - силы тяжести.

Разделим силы, действующие на систему частиц, на внутренние и внешние, а внутренние - на потенциальные и непотенциальные. Представим (3.10) в виде

Перепишем (3.24) с учетом (3.23):

Величина, сумма кинетической и собственной по­тенциальной энергии системы, является полной механической эне­ргией системы . Перепишем (3.25) в виде:

т.е., приращение механической энергии системы равно алгебраической сумме работ всех внутренних непотенциальных сил и всех внешних сил.

Если в (3.26) положить A внешн =0 (это равенство означает, что система является замкнутой) и (что равносильно отсутствию внутренних непотенциальных сил), то получим:

Оба равенства (3.27) являются выражениями закона сохранения механической энергии : механическая энергия замкнутой системы частиц, в которой отсутствуют непотенциальные силы, сохраняется в процес­се движения, Такую систему называют консервативной. С достаточной степенью точности замкнутой консервативной системой можно считать Солнечную систему. При движении замкнутой консервативной си­стемы сохраняется полная механическая энергия, в то время как кинетическая и потенциальная энергия изме­няются. Однако эти изменения такие, что приращение одной из них в точности равно уменьшению другой.

Если замк­нутая система не является консервативной, т. е. в ней действуют непотенциальные силы, например, силы трения, то механическая энергия такой систе­мы, убывает, так как расходуется на работу против этих сил. Закон сохранения механической энергии является лишь отдельным проявлением существующего в природе универсального закона сохранения и превращения энер­гии: энергия никогда не создается и не уничтожается, она мо­жет только переходить из одной формы в другую или об­мениваться между отдельными частями материи. При этом понятие энергии расширяется введением понятий о новых формах ее кроме механической, - энергии электромагнитного поля, химической энергии, ядерной и др. Универсальный закон сохранения и превращения энер­гии охватыва­ет те физические явления, на которые законы Ньютона не распространяются. Этот закон имеет самостоятельное значение, так как получен на основе обобщений опытных фактов.


Пример 3.1 . Найти работу, совершаемую упругой силой, действующей на материальную точку вдоль некоторой оси х. Сила подчиняется закону , где х - смещение точки из начального положения (в котором.х=x 1), - единичный вектор в направлении оси х.

Найдем элементарную работу упругой силы при перемещении точки на величину dx. В формулу (3.1) для элементарной работы подставим выражение для силы:

.

Затем найдем работу силы, выполним интегрирование вдоль оси x в пределах от x 1 до x :

. (3.28)

Формулу (3.28) можно применить для определения потенциальной энергии сжатой или растянутой пружины, которая первоначально находится в свободном состоянии, т.е. x 1 =0 (коэффициент k называется коэффициеном жесткости пружины). Потенциальная энергия пружины при сжатии или растяжении равна работе против упругих сил, взятой с обратным знаком:

.

Пример 3.2 Применение теоремы об изменении кинетической энергии.

Найти минимальную скорость u, которую надо сообщить снаряду , чтобы он поднялся на высоту H над поверхностью Земли (сопротивлением атмосферного воздуха пренебречь ).

Направим ось координат от центра Земли по направлению полета снаряда. Начальная кинетическая энергия снаряда будет затрачена на работу против потенциальных сил гравитационного притяжения Земли. Формулу (3.10) с учетом формулы (3.3) можно представить в виде:

.

Здесь A – работа против силы гравитационного притяжения Земли (, g гравитационная постоянная, r – расстояние, отсчитываемое от центра Земли). Знак минус появляется из-за того, что проекция силы гравитационного притяжения на направление движения снаряда отрицательна. Интегрируя последнее выражение и учитывая, что T(R+H)=0, T(R) = mυ 2 /2 , получим:

Решив полученное уравнение относительно υ, найдем:

где - ускорение свободного падения на поверхности Земли.